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Abstract

In this work we discuss a proposal of entangling atomic states of particles which have never

interacted. The experimental realization proposed makes use of the interaction of Rydberg atoms

with a micromaser cavity prepared in a coherent state.

Usually entanglement is understood as a consequence of some interaction of the particles in
their common past. Thus far, it has been achieved either by having the two particles emerging from the
same source [1] or by having the two particles interacting with each other [2]. However, Yurke and Stoler
[3] and Zukowski et al [4] showed that one can entangle particles that do not even share any common
past. In a recent paper it has been suggested an experimental realization of teleportation of atomic states
via cavity quantum eletrodynamics [5]. Based on the results presented there, in the present work we show
that it is possible to build a scheme to entangle the states of two atoms which have never interacted.

Consider a three-level cascade atom Ak with |hk〉, |ek〉 and |gk〉 being the higher, intermediate
and lower atomic states. Our scheme involves Ramsey cavities and another one (C ) with high quality
factor. We assume that the transition |ek〉⇀↽ |fk〉 is far enough from resonance with the field inside C, so
that the dispersive interaction between atom and field can be described by the time evolution operator

U = e−iϕ(a†a+1)|hk〉〈hk|+ eiϕa†a|ek〉〈ek|, (1)

where a (a†) is the annihilation (creation) operator for the field in C, ϕ = g2τ/ ∆, g is the coupling
constant, τ is the interaction time, ∆ = ωh − ωe − ω is the detuning, ωh and ωe are the frequencies of
the upper and intermediate levels respectively and ω is the cavity C frequency. In addition we assume
that the transitions |ek〉 ⇀↽ |gk〉 and |hk〉 ⇀↽ |gk〉 are highly detuned from the ω so that there will be
no coupling with the cavity field involving the state |gk〉. However we suppose that |gk〉 is coupled to
the state |ek〉 in the Ramsey cavities which we shall use to prepare the atomic Bell states involving the
states |ek〉 and |gk〉. Therefore, considering the atom-field interaction in C, the level |hk〉 will never be
populated during the whole process so that we can ignore it from now on, since it will not play any role
in our scheme, being important only as origin of the phase factor in the time evolution operator (see
Eq.(2)). Hence, we have effectively a two-level system involving the states |ek〉 and |gk〉, corresponding
to the time evolution operator

U = eiπa†a|fk〉〈fk|+ |gk〉〈gk|, (2)

where the second term above was put by hand just in order to take into account the effect of level |gk〉
and we have taken ϕ = π.

Now, we discuss briefly how to prepare two entangled atoms. First, we assume that we have
an atom A1, initially in the state |ψ〉A1

= 1√
2
(|f1〉+ |g1〉), which passes through C (prepared in coherent

state | − α〉), whose time evolution of the system formed by the atom and the cavity field is ruled by
Eq.(2). After that, we let atom A1 pass through a Ramsey cavity R0, where the atomic states are rotated
according to

1√
2
(|f1〉+ |g1〉)→ |f1〉,

1√
2
(−|f1〉+ |g1〉)→ |g1〉. (3)

Second, we let another atom A2 cross the cavity C and also the Ramsey cavity R0, so that it is subjected
to the same effects represented by Eqs. (2) and (3). In the case of the Ramsey cavity, we supose that it,
as a classical device, can produce the rotation (3) in A1 as well as in A2. Now, we inject | − α〉 in cavity



C, which mathematically is represented by the operation D(β)|α〉 = |α + β〉, where D(β) = e(βa†−β∗a),
and experimentally it is obtained with a classical oscillating current in an antenna coupled to the cavity.
At this point, the system state is given by

|ψ〉A1−A2−C =
1

2

{

|f1〉|f2〉
(

|0〉+ | − 2α〉
)

− |g1〉|g2〉
(

|0〉 − | − 2α〉
)

}

. (4)

In order to disentangle the atomic states of the cavity field state, we now send a two-level atom A3,
resonant with the cavity, with |f3〉 and |e3〉 being the lower and upper levels respectively, through C. A3

is sent in the lower state |f3〉. When interacting with the cavity field, we know that the state |f3〉|0〉 does
not evolve, whereas the state |f3〉| − 2α〉 evolves to |e3〉|χe〉+ |f3〉|χf 〉, where |χe〉 and |χf 〉 are different
cavity field states, whose expressions, in terms of the Fock states, do not concern us, but which are well
known under the Jaynes-Cummings model [6]. Finally, the last step to obtain the entangled state of
atoms A1 and A2 is detecting A3 in the state |e3〉. It yields

|Φ+〉A1−A2
=

1√
2
(|f1〉|f2〉+ |g1〉|g2〉). (5)

Following a similar proceeding, we can form a Bell basis [7]

|Φ−〉A1−A2
=

1√
2
(|f1〉|f2〉 − |g1〉|g2〉),

|Ψ−〉A1−A2
=

1√
2
(|f1〉|g2〉 − |g1〉|f2〉),

|Ψ+〉A1−A2
=

1√
2
(|f1〉|g2〉+ |g1〉|f2〉), (6)

which is a complete orthonormal basis for atoms A1 and A2.
Consider that we have a system, which consists of two pairs of entangled atoms, whose state is

|Ψ〉A1−A2−A3−A4
= |Ψ−〉A1−A2

⊗ |Ψ−〉A3−A4
. (7)

The above state can be rewritten as

|Ψ〉A1−A2−A3−A4
=

1

2

(

|Ψ+〉A1−A4
|Ψ+〉A2−A3

+ |Ψ−〉A1−A4
|Ψ−〉A2−A3

+

|Φ+〉A1−A4
|Φ+〉A2−A3

+ |Φ−〉A1−A4
|Φ−〉A2−A3

)

, (8)

Although atoms A1 and A4 have never interacted, we can entangle them if we measure properly the state
of atoms A2 and A3. This is what Eq. (8) tell us. Now, we discuss how to perform the measurements in
order to project the state of A1 and A4 onto any of the Bell states.

Let us assume we have a cavity prepared in a coherent state |α〉. Notice that, if we send atoms
A2 and A3 through C in one of the Bell states, Eqs.(5) and (6), according to the time evolution operator
(2), we get

|Φ±〉A2−A3
|α〉 −→ |Φ±〉A2−A3

|α〉 and |Ψ±〉A2−A3
|α〉 −→ |Ψ±〉A2−A3

| − α〉 (9)

Therefore, considering (8), after atoms A2 and A3 pass through the cavity and, then, we inject |α〉 in C,
it yields

|Ψ〉A1−A2−A3−A4−C =
1

2

(

|Ψ+〉A1−A4
|Ψ+〉A2−A3

|0〉+ |Ψ−〉A1−A4
|Ψ−〉A2−A3

|0〉+

|Φ+〉A1−A4
|Φ+〉A2−A3

|2α〉+ |Φ−〉A1−A4
|Φ−〉A2−A3

|2α〉
)

, (10)

As done before, in order to disentangle the atomic states of the cavity field state, we send a two-level atom
A5, resonant with the cavity, with |f5〉 and |e5〉 being the lower and upper levels respectively, through C.
If A5 is sent in the lower state |f5〉, after we detect A5 in |e5〉, we get

|Ψ〉A1−A2−A3−A4
=

1√
2

(

|Φ+〉A1−A4
|Φ+〉A2−A3

+ |Φ−〉A1−A4
|Φ−〉A2−A3

)

. (11)



Now, we have to distinguish |Φ+〉A2−A3
from |Φ−〉A2−A3

. In order to do this we notice that, defining the
operator Σx = σ2

xσ
3
x, where σk

x = |fk〉〈gk| + |gk〉〈fk|, we have Σx|Φ±〉A2−A3
= ±|Φ±〉A2−A3

. Therefore,
we can distinguish between |Φ+〉A2−A3

and |Φ−〉A2−A3
performing measurements of Σx. In order to

do so, we proceed as follows. We make use of another Ramsey cavity, represented by the operator
R1 = 1√

2
(|f〉〈f | − |f〉〈g| + |g〉〈f |+ |g〉〈g|), to gradually unravel the Bell states. The eigenvectors of the

operators σk
x are |A±

k 〉 = 1√
2
(|fk〉 ± |gk〉) and we can rewrite the Bell states as

|Φ±〉A2−A3
=

1

2

[

|A+
2 〉

(

|f3〉 ± |g3〉
)

+ |A−
2 〉

(

|f3〉 ∓ |g3〉
)

]

, (12)

Let us take, for instance, |Φ+〉A2−A3
= 1√

2
(|f2〉|f3〉+ |g2〉|g3〉). Applying R1 to this state, we have

R1|Φ+〉A2−A3
=

1

2

{

|f2〉
(

|f3〉 − |g3〉
)

+ |g2〉
(

|f3〉+ |g3〉
)

}

. (13)

Now, we compare (13) and (12). We see that the rotation by R1 followed by the detection of |g2〉
corresponds to the detection of the state |A2,+〉, whose eigenvalue of σ2

x is +1. After we detect |g2〉, we
get |ψ〉A3

= 1√
2
(|f3〉 + |g3〉) that is, we obtain |ψ〉A3

= |A3,+〉. If now we apply R1 to A3, that is, if A3

pass in a Ramsey cavity which performs the operation described by R1, we get R1|ψ〉A3
= |g3〉. We see

that the rotation by R1 followed by the detection of |g3〉 corresponds to the detection of the state |A3,+〉
whose eigenvalue of σ3

x is +1. Consequently, after this proceeding, the atoms A1 and A4 are collapsed
in the entangled state |Φ+〉A1−A4

. Similarly, we can measure the eigenvalue −1 of Σx and, consequently,
make the atoms A1 and A4 to collapse in the entangled state |Φ−〉A1−A4

.
In fact, we can change the proceeding described above, in order to make the atoms A1 and

A4 to collapse in any state of the Bell basis (5) and (6). Summarizing, we have the following possible
proceedings which results in one of the four Bell states involving atoms A1 and A4, which are presented
in the table below:

(injection of |α〉)(R1, 〈g2|)(R1, 〈g3|)←→ |A2,+〉|A3,+〉 =⇒ |Φ+〉A1−A4

(injection of |α〉)(R1, 〈g2|)(R1, 〈f3|)←→ |A2,+〉|A3,−〉 =⇒ |Φ−〉A1−A4

(injection of | − α〉)(R1, 〈f2|)(R1, 〈f3|)←→ |A2,−〉|A3,−〉 =⇒ |Ψ+〉A1−A4

(injection of | − α〉)(R1, 〈g2|)(R1, 〈f3|)←→ |A2,+〉|A3,−〉 =⇒ |Ψ−〉A1−A4
(14)

Finally, let us analyze the feasibility of the experimental implementation of the above scheme
of entanglement swapping. Considering Rydberg atoms of principal quantum numbers 50 or 51, the
radiative time is of the order of 10−2 s and the coupling constant g is of the order of 2π×25 kHz [8, 9, 10]
and the detuning ∆ is of the order of 2π × 100 kHz. Taking into account that ϕ = g2τ/∆, for ϕ = π we
have an interaction time τ = 8× 10−5 s and we could, in principle, assume a time of the order of 10−4 s
to realize the entanglement swapping which is much shorter than the radiative time. We have to consider
also the cavity decay time which in recent experiments, with niobium superconducting cavities at very
low temperature and quality factors in the 109 − 1010 range, have a cavity energy damping time of the
order of 10 to 100 ms, and which could be larger than the required time to perform the entanglement
swapping.
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