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Abstract

In this paper we analyze the wave mixing between the waves diffracted by a relief grating, in order
to understand the relation between the phases of the diffracted waves and the geometrical
parameters of the grating. Theoretical calculations of these phases as well as experimental
measurements were presented  demonstrating the validity of the analysis.

Introduction
Diffraction gratings are well known devices used to separate the spectrum of the light. In a medium of refractive
index n1, the directions of the diffracted waves (βm) are given by the famous grating equation:

( ) λβα ⋅=⋅+⋅ msinnsind m1                                               (1)

being: d the grating period, λλ the incident wavelength, m the number of the diffracted order, αα the incident angle
and ββm the angle of the diffracted m order. The signal of the angles and of the diffracted orders are defined in the
Figure 1

.
Figure 1: Scheme of the directions of the diffracted orders

The amplitude of the diffracted waves, however, depend not only of the incident wavelength and the grating
period, but also on the polarization of the incident wave and on the depth and shape of the grooves. If the grating
period is of the same magnitude of the incident wavelength (resonant domain), it is necessary to use rigorous
diffraction theories to calculate the diffracted waves. In this region the gratings present interesting polarization
properties that can be used to fabricate diffractive polarizing elements.
The diffraction calculation using rigorous diffraction theories is fully numerical rising difficult to understand the
general behavior of the diffracted waves. Although such phases are very important to design polarizing elements
as wave-plates, the role of the phases of the diffracted waves is few addressed in the literature. Otherwise, if
there is no interference between the diffracted waves, these phases have no physical meaning.
In this work we analyze an experiment of wave mixing between the waves diffracted by a relief grating, in order
to understand the relation between the phases of the diffracted waves and the geometrical parameters of the
grating.
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The wave mixing of the diffracted waves
We assume a relief grating (of period d) illuminated simultaneously by two symmetrical waves (EA and EB) of
the same wavelength at the Littrow (or Bragg) incident angle. Figure 2 illustrates such situation. At this
condition the sinus of the incident angle in Eq. (1) is given by:

d2
sin

λα ±=                                                                 (2)

The minus signal corresponds to the upper incident wave and the plus signal the bottom incident wave (in Figure
2).  If we call k the number of the diffracted order of the upper wave and m the number of the diffracted order of
the bottom wave, we can observe that the diffracted directions ββm and ββk will coincide if :

 1km =−                                                                 (3)

Figure 2: Scheme of the wave mixing between the waves diffracted in a relief grating.

The transmitted light is distributed in the directions given by Eq. (1). In each of these directions there is wave
mixing between two consecutive orders of the symmetrically incident beams. For the directions shown in the
Figure 2 the  intensities resulting of the interference of each couple of waves is given by:

( )3A2B3A2B3A2B1 II2III −−−−−− −+++= ϕϕψcos

( )2A1B2A1B2A1B2 II2III −−−−−− −+++= ϕϕψcos

( )1A0B1A0B1A0B3 II2III −−− −+++= ϕϕψcos

( )0A1B1B0A1B0A4 II2III ϕϕψ −+++= +++ cos                              (4)

( )1A2B2B1A2B1A5 II2III ++++++ −+++= ϕϕψcos

( )2A3B3B2A3B2A6 II2III ++++++ −+++= ϕϕψcos

With ψψ being the phase difference between the incident waves (EA and EB in Fig.2) and the ϕϕs being the phases
added  by the diffraction, whose values depend on the diffraction order number. EAk and EBm are the amplitude
of the diffracted orders and IAk and IBm their corresponding intensities. The total number of existing orders
depend on the grating period (given by Eq. 1). For larger periods more orders are present.
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Due to the symmetry of the incident beams:

nBnA −+ = ϕϕ                                                                   (5)

and also for the amplitude of the diffracted waves:

nBnA EE −+ =                                                                 (6)

As it can be observed from Eqs. (4), the intensities in each diffraction direction depends on the phase differences

of the diffracted orders 1AnBn −− ϕϕ  and of the phase ψψ. This last phase representing the actual phase shift

between the incident waves which also represents the lateral shift between the grating and the interference
pattern formed by the incident waves. However, the sum of the total transmitted intensities can not depend on
this phase ψ because this sum represents the total transmitted energy, and it may not depend on the lateral
position of the grating.

If the period of the grating in Eq. 1 satisfies:

( ) λλ 2   dn2/ 1 〈⋅+                                                              (7)

there is only one diffracted order for each incident beam, thus Eq. (4) reduces to only two directions whose
intensities are:

    ( )0A1B1B0A1B0AA II2III ϕϕψ −+++= +++ cos

( )1A0B1A0B1A0BB II2III −−− −+++= ϕϕψcos                                 (8)

Thus, in order to keep the sum of the intensities independent of the phase ψψ, the phase difference:

2/0B1A0A1B πϕϕϕϕ ≡−=− −+                                             (9)

Thus the phase difference between the first and the zeroth diffracted orders must be equal to π/2, independently
of the grating shape or depth..
When the period of the grating allows the presence of higher diffraction orders, the phase difference ϕϕ1-ϕϕ0 is no
longer restrict to π/2, but it can vary because there are more diffracted directions to be summed. These phase
variations must satisfy the condition that the sum of the intensities in all diffracted directions must be
independent of ψψ.  In order to check these conclusions theoretical calculations and experimental measurements
of the phase difference ϕϕ1-ϕϕ0 were performed.

Results and Discussions
Theoretical calculations of the phase difference between the first and zeroth diffracted orders (ϕϕ1-ϕϕ0) were
performed, using the coordinate transformation method (the C method)[1], for incidence at first-order Littrow
mounting, at the wavelength 0.4579 µm, assuming a sinusoidal profiled relief grating . Figure 3 shows the phase
difference ϕϕ1-ϕϕ0 for two grating periods (d = 0.42µm and d = 0.8µm) as a function of the grating depth h. At
small depths this curve should starts from π/2, independently of the grating profile, as expected for shallow
phase gratings from the scalar theory[2]. As it can be seen from the curves, ϕϕ1-ϕϕ0 is constant and equal to π/2 for
all grating depths for the period of d = 0.42µm while for the period of d = 0.8µm it decreases with the grating
depth.
In the same Figure 3 are shown the experimental measurements of such phases for some samples with d = 0.42
and 0.8µm with different depths. The phase measurements were performed using a method recently developed in
our laboratory[3].
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Figure 3. Theoretical and experimental values of the phase difference ϕ1-ϕ0 as a function
of the grating depth for two periods d = 0.42µm and d = 0.8µm. The theoretical calculations
assumed a sinusoidal profiled grating

Conclusions
The results presented in Figure 3 demonstrates that for a grating period d = 0.42µm, which satisfies Eq. (7), the
phase difference ϕϕ1-ϕϕ0 = π/2 independently of the grating depth. For the grating period d = 0.80µm, the phase
difference ϕϕ1-ϕϕ0  decreases with the grating depth. Although for the period d = 0.42µm there is only one
experimental measurement the good agreement between the experimental measurements and the calculated
phase difference curve for d = 0.80µm gives confidence to the theoretical calculations.
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